Hamburger Icon
  • Course
    • Libraries: If you want this course, consider one of these libraries.
    • Data

Implementing Machine Learning Workflow with Weka

In this course, you will learn how you can develop your machine learning workflow using Weka, an open-source machine learning software for data preparation, machine learning, and predictive model deployment.

Janani Ravi - Pluralsight course - Implementing Machine Learning Workflow with Weka
by Janani Ravi

What you'll learn

Weka is a tried and tested open-source machine learning software for building all components of a machine learning workflow. In this course, Implementing Machine Learning Workflow with Weka, you will learn terminal applications as well as a Java API to train models. Weka is commonly used for teaching, research, and industrial applications.

First, you will get started with an Apache Maven project and set up your Java development environment with all of the dependencies that you need for building Weka applications. Next, you will explore building and evaluating classification models in Weka.

Finally, you will implement unsupervised learning techniques in Weka and perform clustering using the k-means clustering algorithm, hierarchical clustering as well as expectation-maximization clustering.

When you are finished with this course, you will have the knowledge and skills to build supervised and unsupervised machine learning models using the Weka Java library.

Table of contents

About the author

Janani Ravi - Pluralsight course - Implementing Machine Learning Workflow with Weka
Janani Ravi

A problem solver at heart, Janani has a Masters degree from Stanford and worked for 7+ years at Google. She was one of the original engineers on Google Docs and holds 4 patents for its real-time collaborative editing framework.

More Courses by Janani